Motivated by the manifold hypothesis, which states that data with a high extrinsic dimension may yet have a low intrinsic dimension, we develop refined statistical bounds for entropic optimal transport that are sensitive to the intrinsic dimension of the data. Our bounds involve a robust notion of intrinsic dimension, measured at only a single distance scale depending on the regularization parameter, and show that it is only the minimum of these single-scale intrinsic dimensions which governs the rate of convergence. We call this the Minimum Intrinsic Dimension scaling (MID scaling) phenomenon, and establish MID scaling with no assumptions on the data distributions so long as the cost is bounded and Lipschitz, and for various entropic optimal transport quantities beyond just values, with stronger analogs when one distribution is supported on a manifold. Our results significantly advance the theoretical state of the art by showing that MID scaling is a generic phenomenon, and provide the first rigorous interpretation of the statistical effect of entropic regularization as a distance scale.