Multi-armed bandit (MAB) algorithms have achieved significant success in sequential decision-making applications, under the premise that humans perfectly implement the recommended policy. However, existing methods often overlook the crucial factor of human trust in learning algorithms. When trust is lacking, humans may deviate from the recommended policy, leading to undesired learning performance. Motivated by this gap, we study the trust-aware MAB problem by integrating a dynamic trust model into the standard MAB framework. Specifically, it assumes that the recommended and actually implemented policy differs depending on human trust, which in turn evolves with the quality of the recommended policy. We establish the minimax regret in the presence of the trust issue and demonstrate the suboptimality of vanilla MAB algorithms such as the upper confidence bound (UCB) algorithm. To overcome this limitation, we introduce a novel two-stage trust-aware procedure that provably attains near-optimal statistical guarantees. A simulation study is conducted to illustrate the benefits of our proposed algorithm when dealing with the trust issue.