For more than twenty years, Ray Tracing methods have continued to improve on both accuracy and computational time aspects. However, most state-of-the-art image-based ray tracers still rely on a description of the environment that only contains planar surfaces. They are also limited by the number of diffractions they can simulate. We present Min-Path-Tracing (MPT), an alternative to the image method that can handle diffractions seamlessly, while also leveraging the possibility to use different geometries for surfaces or edges, such as parabolic mirrors. MPT uses implicit representations of objects to write the path finding challenge as a minimization problem. We further show that multiple diffractions can be important in some situations, which MPT is capable to simulate without increasing neither the computational nor the implementation complexity.