Climate change may be classified as the most important environmental problem that the Earth is currently facing, and affects all living species on Earth. Given that air-quality monitoring stations are typically ground-based their abilities to detect pollutant distributions are often restricted to wide areas. Satellites however have the potential for studying the atmosphere at large; the European Space Agency (ESA) Copernicus project satellite, "Sentinel-5P" is a newly launched satellite capable of measuring a variety of pollutant information with publicly available data outputs. This paper seeks to create a multi-modal machine learning model for predicting air-quality metrics where monitoring stations do not exist. The inputs of this model will include a fusion of ground measurements and satellite data with the goal of highlighting pollutant distribution and motivating change in societal and industrial behaviors. A new dataset of European pollution monitoring station measurements is created with features including $\textit{altitude, population, etc.}$ from the ESA Copernicus project. This dataset is used to train a multi-modal ML model, Air Quality Network (AQNet) capable of fusing these various types of data sources to output predictions of various pollutants. These predictions are then aggregated to create an "air-quality index" that could be used to compare air quality over different regions. Three pollutants, NO$_2$, O$_3$, and PM$_{10}$, are predicted successfully by AQNet and the network was found to be useful compared to a model only using satellite imagery. It was also found that the addition of supporting data improves predictions. When testing the developed AQNet on out-of-sample data of the UK and Ireland, we obtain satisfactory estimates though on average pollution metrics were roughly overestimated by around 20\%.