Text-to-image synthesis has achieved high-quality results with recent advances in diffusion models. However, text input alone has high spatial ambiguity and limited user controllability. Most existing methods allow spatial control through additional visual guidance (e.g, sketches and semantic masks) but require additional training with annotated images. In this paper, we propose a method for spatially controlling text-to-image generation without further training of diffusion models. Our method is based on the insight that the cross-attention maps reflect the positional relationship between words and pixels. Our aim is to control the attention maps according to given semantic masks and text prompts. To this end, we first explore a simple approach of directly swapping the cross-attention maps with constant maps computed from the semantic regions. Moreover, we propose masked-attention guidance, which can generate images more faithful to semantic masks than the first approach. Masked-attention guidance indirectly controls attention to each word and pixel according to the semantic regions by manipulating noise images fed to diffusion models. Experiments show that our method enables more accurate spatial control than baselines qualitatively and quantitatively.