Deep learning for tabular data has garnered increasing attention in recent years, yet employing deep models for structured data remains challenging. While these models excel with unstructured data, their efficacy with structured data has been limited. Recent research has introduced retrieval-augmented models to address this gap, demonstrating promising results in supervised tasks such as classification and regression. In this work, we investigate using retrieval-augmented models for anomaly detection on tabular data. We propose a reconstruction-based approach in which a transformer model learns to reconstruct masked features of \textit{normal} samples. We test the effectiveness of KNN-based and attention-based modules to select relevant samples to help in the reconstruction process of the target sample. Our experiments on a benchmark of 31 tabular datasets reveal that augmenting this reconstruction-based anomaly detection (AD) method with non-parametric relationships via retrieval modules may significantly boost performance.