The Kronecker coefficients are the decomposition multiplicities of the tensor product of two irreducible representations of the symmetric group. Unlike the Littlewood--Richardson coefficients, which are the analogues for the general linear group, there is no known combinatorial description of the Kronecker coefficients, and it is an NP-hard problem to decide whether a given Kronecker coefficient is zero or not. In this paper, we show that standard machine-learning algorithms such as Nearest Neighbors, Convolutional Neural Networks and Gradient Boosting Decision Trees may be trained to predict whether a given Kronecker coefficient is zero or not. Our results show that a trained machine can efficiently perform this binary classification with high accuracy ($\approx 0.98$).