Optical Wireless Communication (OWC) propagation channel characterization plays a key role on the design and performance analysis of Vehicular Visible Light Communication (VVLC) systems. Current OWC channel models based on deterministic and stochastic methods, fail to address mobility induced ambient light, optical turbulence and road reflection effects on channel characterization. Therefore, alternative machine learning (ML) based schemes, considering ambient light, optical turbulence, road reflection effects in addition to intervehicular distance and geometry, are proposed to obtain accurate VVLC channel loss and channel frequency response (CFR). This work demonstrates synthesis of ML based VVLC channel model frameworks through multi layer perceptron feed-forward neural network (MLP), radial basis function neural network (RBF-NN) and Random Forest ensemble learning algorithms. Predictor and response variables, collected through practical road measurements, are employed to train and validate proposed models for various conditions. Additionally, the importance of different predictor variables on channel loss and CFR is assessed, normalized importance of features for measured VVLC channel is introduced. We show that RBF-NN, Random Forest and MLP based models yield more accurate channel loss estimations with 3.53 dB, 3.81 dB, 3.95 dB root mean square error (RMSE), respectively, when compared to fitting curve based VVLC channel model with 7 dB RMSE. Moreover, RBF-NN and MLP models are demonstrated to predict VVLC CFR with respect to distance, ambient light and receiver inclination angle predictor variables with 3.78 dB and 3.60 dB RMSE respectively.