The deployment of non-binary pulse amplitude modulation (PAM) and soft decision (SD)-forward error correction (FEC) in future intensity-modulation (IM)/direct-detection (DD) links is inevitable. However, high-speed IM/DD links suffer from inter-symbol interference (ISI) due to bandwidth-limited hardware. Traditional approaches to mitigate the effects of ISI are filters and trellis-based algorithms targeting symbol-wise maximum a posteriori (MAP) detection. The former approach includes decision-feedback equalizer (DFE), and the latter includes Max-Log-MAP (MLM) and soft-output Viterbi algorithm (SOVA). Although DFE is easy to implement, it introduces error propagation. Such burst errors distort the log-likelihood ratios (LLRs) required by SD-FEC, causing performance degradation. On the other hand, MLM and SOVA provide near-optimum performance, but their complexity is very high for high-order PAM. In this paper, we consider a one-tap partial response channel model, which is relevant for high-speed IM/DD links. We propose to combine DFE with either MLM or SOVA in a low-complexity architecture. The key idea is to allow MLM or SOVA to detect only 3 typical DFE symbol errors, and use the detected error information to generate LLRs in a modified demapper. The proposed structure enables a tradeoff between complexity and performance: (i) the complexity of MLM or SOVA is reduced and (ii) the decoding penalty due to error propagation is mitigated. Compared to SOVA detection, the proposed scheme can achieve a significant complexity reduction of up to 94% for PAM-$8$ transmission. Simulation and experimental results show that the resulting SNR loss is roughly 0.3 to 0.4 dB for PAM-4, and becomes marginal 0.18 dB for PAM-8.