Satellite Internet of Things (Sat-IoT) is a novel framework in which satellites integrate sensing, communication and computing capabilities to carry out task-oriented communications. In this paper we propose to use the Long Range (LoRa) modulation for the purpose of estimation in a Sat-IoT scenario. Then we realize that the collisions generated by LoRa can be harnessed in an Over-the-Air Computing (AirComp) framework. Specifically, we propose to use LoRa for Type-based Multiple Access (TBMA), a semantic-aware scheme in which communication resources are assigned to different parameters, not users. Our experimental results show that LoRa-TBMA is suitable as a massive access scheme, provides large gains in terms of mean squared error (MSE) and saves scarce satellite communication resources (i.e., power, latency and bandwidth) with respect to orthogonal multiple access schemes. We also analyze the satellite scenarios that could take advantage of the LoRa-TBMA scheme. In summary, that angular modulations, which are very useful in satellite communications, can also benefit from AirComp.