In this paper we discuss how to evaluate the differences between fitted logistic regression models across sub-populations. Our motivating example is in studying computerized diagnosis for learning disabilities, where sub-populations based on gender may or may not require separate models. In this context, significance tests for hypotheses of no difference between populations may provide perverse incentives, as larger variances and smaller samples increase the probability of not-rejecting the null. We argue that equivalence testing for a prespecified tolerance level on population differences incentivizes accuracy in the inference. We develop a cascading set of equivalence tests, in which each test addresses a different aspect of the model: the way the phenomenon is coded in the regression coefficients, the individual predictions in the per example log odds ratio and the overall accuracy in the mean square prediction error. For each equivalence test, we propose a strategy for setting the equivalence thresholds. The large-sample approximations are validated using simulations. For diagnosis data, we show examples for equivalent and non-equivalent models.