Understanding human locomotion is crucial for AI agents such as robots, particularly in complex indoor home environments. Modeling human trajectories in these spaces requires insight into how individuals maneuver around physical obstacles and manage social navigation dynamics. These dynamics include subtle behaviors influenced by proxemics - the social use of space, such as stepping aside to allow others to pass or choosing longer routes to avoid collisions. Previous research has developed datasets of human motion in indoor scenes, but these are often limited in scale and lack the nuanced social navigation dynamics common in home environments. To address this, we present LocoVR, a dataset of 7000+ two-person trajectories captured in virtual reality from over 130 different indoor home environments. LocoVR provides full body pose data and precise spatial information, along with rich examples of socially-motivated movement behaviors. For example, the dataset captures instances of individuals navigating around each other in narrow spaces, adjusting paths to respect personal boundaries in living areas, and coordinating movements in high-traffic zones like entryways and kitchens. Our evaluation shows that LocoVR significantly enhances model performance in three practical indoor tasks utilizing human trajectories, and demonstrates predicting socially-aware navigation patterns in home environments.