We study the problem of preserving privacy while still providing high utility in sequential decision making scenarios in a changing environment. We consider abruptly changing environment: the environment remains constant during periods and it changes at unknown time instants. To formulate this problem, we propose a variant of multi-armed bandits called non-stationary stochastic corrupt bandits. We construct an algorithm called SW-KLUCB-CF and prove an upper bound on its utility using the performance measure of regret. The proven regret upper bound for SW-KLUCB-CF is near-optimal in the number of time steps and matches the best known bound for analogous problems in terms of the number of time steps and the number of changes. Moreover, we present a provably optimal mechanism which can guarantee the desired level of local differential privacy while providing high utility.