Large language models (LLMs) have demonstrated remarkable performance across various language tasks, but their widespread deployment is impeded by their large size and high computational costs. Structural pruning is a prevailing technique used to introduce sparsity into pre-trained models and facilitate direct hardware acceleration during inference by removing redundant connections (structurally-grouped parameters), such as channels and attention heads. Existing structural pruning approaches often employ either global or layer-wise pruning criteria; however, they are hindered by ineffectiveness stemming from inaccurate evaluation of connection importance. Global pruning methods typically assess component importance using near-zero and unreliable gradients, while layer-wise pruning approaches encounter significant pruning error accumulation issues. To this end, we propose a more accurate pruning metric based on the block-wise importance score propagation, termed LLM-BIP. Specifically, LLM-BIP precisely evaluates connection importance by gauging its influence on the respective transformer block output, which can be efficiently approximated in a single forward pass through an upper bound derived from the assumption of Lipschitz continuity. We evaluate the proposed method using LLaMA-7B, Vicuna-7B, and LLaMA-13B across common zero-shot tasks. The results demonstrate that our approach achieves an average of 3.26% increase in accuracy for common reasoning tasks compared to previous best baselines. It also reduces perplexity by 14.09 and 68.76 on average for the WikiText2 dataset and PTB dataset, respectively.