Modern industrial infrastructures rely heavily on Cyber-Physical Systems (CPS), but these are vulnerable to cyber-attacks with potentially catastrophic effects. To reduce these risks, anomaly detection methods based on physical invariants have been developed. However, these methods often require domain-specific expertise to manually define invariants, making them costly and difficult to scale. To address this limitation, we propose a novel approach to extract physical invariants from CPS testbeds for anomaly detection. Our insight is that CPS design documentation often contains semantically rich descriptions of physical procedures, which can profile inter-correlated dynamics among system components. Leveraging the built-in physics and engineering knowledge of recent generative AI models, we aim to automate this traditionally manual process, improving scalability and reducing costs. This work focuses on designing and optimizing a Retrieval-Augmented-Generation (RAG) workflow with a customized prompting system tailored for CPS documentation, enabling accurate extraction of semantic information and inference of physical invariants from complex, multimodal content. Then, rather than directly applying the inferred invariants for anomaly detection, we introduce an innovative statistics-based learning approach that integrates these invariants into the training dataset. This method addresses limitations such as hallucination and concept drift, enhancing the reliability of the model. We evaluate our approach on real-world public CPS security dataset which contains 86 data points and 58 attacking cases. The results show that our approach achieves a high precision of 0.923, accurately detecting anomalies while minimizing false alarms.