Text Simplification is an ongoing problem in Natural Language Processing, solution to which has varied implications. In conjunction with the TSAR-2022 Workshop @EMNLP2022 Lexical Simplification is the process of reducing the lexical complexity of a text by replacing difficult words with easier to read (or understand) expressions while preserving the original information and meaning. This paper explains the work done by our team "teamPN" for English sub task. We created a modular pipeline which combines modern day transformers based models with traditional NLP methods like paraphrasing and verb sense disambiguation. We created a multi level and modular pipeline where the target text is treated according to its semantics(Part of Speech Tag). Pipeline is multi level as we utilize multiple source models to find potential candidates for replacement, It is modular as we can switch the source models and their weight-age in the final re-ranking.