Multimodal alignment aims to construct a joint latent vector space where two modalities representing the same concept map to the same vector. We formulate this as an inverse problem and show that under certain conditions perfect alignment can be achieved. We then address a specific application of alignment referred to as cross-modal transfer. Unsupervised cross-modal transfer aims to leverage a model trained with one modality to perform inference on another modality, without any labeled fine-tuning on the new modality. Assuming that semantic classes are represented as a mixture of Gaussians in the latent space, we show how cross-modal transfer can be performed by projecting the data points from the representation space onto different subspaces representing each modality. Our experiments on synthetic multimodal Gaussian data verify the effectiveness of our perfect alignment and cross-modal transfer method. We hope these findings inspire further exploration of the applications of perfect alignment and the use of Gaussian models for cross-modal learning.