https://github.com/ZhengtongXu/LeTac-MPC.
Grasping is a crucial task in robotics, necessitating tactile feedback and reactive grasping adjustments for robust grasping of objects under various conditions and with differing physical properties. In this paper, we introduce LeTac-MPC, a learning-based model predictive control (MPC) for tactile-reactive grasping. Our approach enables the gripper grasp objects with different physical properties on dynamic and force-interactive tasks. We utilize a vision-based tactile sensor, GelSight, which is capable of perceiving high-resolution tactile feedback that contains the information of physical properties and states of the grasped object. LeTac-MPC incorporates a differentiable MPC layer designed to model the embeddings extracted by a neural network (NN) from tactile feedback. This design facilitates convergent and robust grasping control at a frequency of 25 Hz. We propose a fully automated data collection pipeline and collect a dataset only using standardized blocks with different physical properties. However, our trained controller can generalize to daily objects with different sizes, shapes, materials, and textures. Experimental results demonstrate the effectiveness and robustness of the proposed approach. We compare LeTac-MPC with two purely model-based tactile-reactive controllers (MPC and PD) and open-loop grasping. Our results show that LeTac-MPC has the best performance on dynamic and force-interactive tasks and the best generalization ability. We release our code and dataset at