In this work, we introduce a straightforward and effective methodology to steer large language model behaviour capable of bypassing learned alignment goals. We employ interference-time activation shifting, which is effective without additional training. Following prior studies, we derive intervention directions from activation differences in contrastive pairs of model outputs, which represent the desired and undesired behaviour. By prompting the model to include multiple-choice answers in its response, we can automatically evaluate the sensitivity of model output to individual attention heads steering efforts. We demonstrate that interventions on these heads generalize well to open-ended answer generation in the challenging "AI coordination" dataset. In this dataset, models must choose between assisting another AI or adhering to ethical, safe, and unharmful behaviour. Our fine-grained interventions lead Llama 2 to prefer coordination with other AIs over following established alignment goals. Additionally, this approach enables stronger interventions than those applied to whole model layers, preserving the overall cohesiveness of the output. The simplicity of our method highlights the shortcomings of current alignment strategies and points to potential future research directions, as concepts like "AI coordination" can be influenced by selected attention heads.