Learning chess strategies has been investigated widely, with most studies focussing on learning from previous games using search algorithms. Chess textbooks encapsulate grandmaster knowledge, explain playing strategies and require a smaller search space compared to traditional chess agents. This paper examines chess textbooks as a new knowledge source for enabling machines to learn how to play chess -- a resource that has not been explored previously. We developed the LEAP corpus, a first and new heterogeneous dataset with structured (chess move notations and board states) and unstructured data (textual descriptions) collected from a chess textbook containing 1164 sentences discussing strategic moves from 91 games. We firstly labelled the sentences based on their relevance, i.e., whether they are discussing a move. Each relevant sentence was then labelled according to its sentiment towards the described move. We performed empirical experiments that assess the performance of various transformer-based baseline models for sentiment analysis. Our results demonstrate the feasibility of employing transformer-based sentiment analysis models for evaluating chess moves, with the best performing model obtaining a weighted micro F_1 score of 68%. Finally, we synthesised the LEAP corpus to create a larger dataset, which can be used as a solution to the limited textual resource in the chess domain.