We propose a novel approach to identify one of the most significant dermoscopic criteria in the diagnosis of Cutaneous Melanoma: the Blue-whitish structure. In this paper, we achieve this goal in a Multiple Instance Learning framework using only image-level labels of whether the feature is present or not. As the output, we predict the image classification label and as well localize the feature in the image. Experiments are conducted on a challenging dataset with results outperforming state-of-the-art. This study provides an improvement on the scope of modelling for computerized image analysis of skin lesions, in particular in that it puts forward a framework for identification of dermoscopic local features from weakly-labelled data.