We define an online learning and optimization problem with irreversible decisions contributing toward a coverage target. At each period, a decision-maker selects facilities to open, receives information on the success of each one, and updates a machine learning model to guide future decisions. The goal is to minimize costs across a finite horizon under a chance constraint reflecting the coverage target. We derive an optimal algorithm and a tight lower bound in an asymptotic regime characterized by a large target number of facilities $m\to\infty$ but a finite horizon $T\in\mathbb{Z}_+$. We find that the regret grows sub-linearly at a rate $\Theta\left(m^{\frac{1}{2}\cdot\frac{1}{1-2^{-T}}}\right)$, thus converging exponentially fast to $\Theta(\sqrt{m})$. We establish the robustness of this result to the learning environment; we also extend it to a more complicated facility location setting in a bipartite facility-customer graph with a target on customer coverage. Throughout, constructive proofs identify a policy featuring limited exploration initially for learning purposes, and fast exploitation later on for optimization purposes once uncertainty gets mitigated. These findings underscore the benefits of limited online learning and optimization, in that even a few rounds can provide significant benefits as compared to a no-learning baseline.