Solving a polynomial system, or computing an associated Gr\"obner basis, has been a fundamental task in computational algebra. However, it is also known for its notoriously expensive computational cost -- doubly exponential time complexity in the number of variables in the worst case. In this paper, we achieve for the first time Gr\"obner basis computation through the training of a transformer. The training requires many pairs of a polynomial system and the associated Gr\"obner basis, thus motivating us to address two novel algebraic problems: random generation of Gr\"obner bases and the transformation of them into non-Gr\"obner polynomial systems, termed as \textit{backward Gr\"obner problem}. We resolve these problems with zero-dimensional radical ideals, the ideals appearing in various applications. The experiments show that in the five-variate case, the proposed dataset generation method is five orders of magnitude faster than a naive approach, overcoming a crucial challenge in learning to compute Gr\"obner bases.