Large Scale Question-Answering systems today are widely used in downstream applications such as chatbots and conversational dialogue agents. Typically, such systems consist of an Answer Passage retrieval layer coupled with Machine Comprehension models trained on natural language query-passage pairs. Recent studies have explored Question Answering over structured data sources such as web-tables and relational databases. However, architectures such as Seq2SQL assume the correct table a priori which is input to the model along with the free text question. Our proposed method, analogues to a passage retrieval model in traditional Question-Answering systems, describes an architecture to discern the correct table pertaining to a given query from amongst a large pool of candidate tables.