Masked autoencoders (MAEs) represent a prominent self-supervised learning paradigm in computer vision. Despite their empirical success, the underlying mechanisms of MAEs remain insufficiently understood. Recent studies have attempted to elucidate the functioning of MAEs through contrastive learning and feature representation analysis, yet these approaches often provide only implicit insights. In this paper, we propose a new perspective for understanding MAEs by leveraging the information bottleneck principle in information theory. Our theoretical analyses reveal that optimizing the latent features to balance relevant and irrelevant information is key to improving MAE performance. Building upon our proofs, we introduce MI-MAE, a novel method that optimizes MAEs through mutual information maximization and minimization. By enhancing latent features to retain maximal relevant information between them and the output, and minimizing irrelevant information between them and the input, our approach achieves better performance. Extensive experiments on standard benchmarks show that MI-MAE significantly outperforms MAE models in tasks such as image classification, object detection, and semantic segmentation. Our findings validate the theoretical framework and highlight the practical advantages of applying the information bottleneck principle to MAEs, offering deeper insights for developing more powerful self-supervised learning models.