https://github.com/sehunfromdaegu/ECG_JEPA.
We propose a self-supervised learning method for 12-lead Electrocardiogram (ECG) analysis, named ECG Joint Embedding Predictive Architecture (ECG-JEPA). ECG-JEPA employs a masking strategy to learn semantic representations of ECG data. Unlike existing methods, ECG-JEPA predicts at the hidden representation level rather than reconstructing raw data. This approach offers several advantages in the ECG domain: (1) it avoids producing unnecessary details, such as noise, which is common in standard ECG; and (2) it addresses the limitations of na\"ive L2 loss between raw signals. Another key contribution is the introduction of a special masked attention tailored for 12-lead ECG data, Cross-Pattern Attention (CroPA). CroPA enables the model to effectively capture inter-patch relationships. Additionally, ECG-JEPA is highly scalable, allowing efficient training on large datasets. Our code is openly available