Software-defined networks (SDN) enable flexible and effective communication systems, e.g., data centers, that are managed by centralized software controllers. However, such a controller can undermine the underlying communication network of an SDN-based system and thus must be carefully tested. When an SDN-based system fails, in order to address such a failure, engineers need to precisely understand the conditions under which it occurs. In this paper, we introduce a machine learning-guided fuzzing method, named FuzzSDN, aiming at both (1) generating effective test data leading to failures in SDN-based systems and (2) learning accurate failure-inducing models that characterize conditions under which such system fails. This is done in a synergistic manner where models guide test generation and the latter also aims at improving the models. To our knowledge, FuzzSDN is the first attempt to simultaneously address these two objectives for SDNs. We evaluate FuzzSDN by applying it to systems controlled by two open-source SDN controllers. Further, we compare FuzzSDN with two state-of-the-art methods for fuzzing SDNs and two baselines (i.e., simple extensions of these two existing methods) for learning failure-inducing models. Our results show that (1) compared to the state-of-the-art methods, FuzzSDN generates at least 12 times more failures, within the same time budget, with a controller that is fairly robust to fuzzing and (2) our failure-inducing models have, on average, a precision of 98% and a recall of 86%, significantly outperforming the baselines.