Accurate orientation estimation of an object in a scene is critical in robotics, aerospace, augmented reality, and medicine, as it supports scene understanding. This paper introduces a novel orientation estimation approach leveraging radio frequency (RF) sensing technology and leaky-wave antennas (LWAs). Specifically, we propose a framework for a radar system to estimate the orientation of a \textit{dumb} LWA-equipped backscattering tag, marking the first exploration of this method in the literature. Our contributions include a comprehensive framework for signal modeling and orientation estimation with multi-subcarrier transmissions, and the formulation of a maximum likelihood estimator (MLE). Moreover, we analyze the impact of imperfect tag location information, revealing that it minimally affects estimation accuracy. Exploiting related results, we propose an approximate MLE and introduce a low-complexity radiation-pointing angle-based estimator with near-optimal performance. We derive the feasible orientation estimation region of the latter and show that it depends mainly on the system bandwidth. Our analytical results are validated through Monte Carlo simulations and reveal that the low-complexity estimator achieves near-optimal accuracy and that its feasible orientation estimation region is also approximately shared by the other estimators. Finally, we show that the optimal number of subcarriers increases with sensing time under a power budget constraint.