In this paper, a novel tool prototype for harvesting table-top grown strawberries is presented. With robustness against strawberry localization error of 15mm and average cycle time of 8.02 seconds at 50% of maximum operational velocity, it provides a promising contribution towards full automation of strawberry harvesting. In addition, the tool has an overall fruit-interacting width of 35mm that greatly enhances reach-ability due to the minimal footprint. A complete harvesting system is also proposed that can be readily mounted to a mobile platform for field tests. An experimental demonstration is performed to showcase the new methodology and derive relevant metrics.