This paper presents a centralized framework for optimizing the joint design of beam placement, power, and bandwidth allocation in an MEO satellite constellation to fulfill the heterogeneous traffic demands of a large number of global users. The problem is formulated as a mixed integer programming problem, which is computationally complex in large-scale systems. To overcome this challenge, a three-stage solution approach is proposed, including user clustering, cluster-based bandwidth and power estimation, and MEO-cluster matching. A greedy algorithm is also included as a benchmark for comparison. The results demonstrate the superiority of the proposed algorithm over the benchmark in terms of satisfying user demands and reducing power consumption.