Transient or permanent faults in hardware can render the output of Neural Networks (NN) incorrect without user-specific traces of the error, i.e. silent data errors (SDE). On the other hand, modern NNs also possess an inherent redundancy that can tolerate specific faults. To establish a safety case, it is necessary to distinguish and quantify both types of corruptions. To study the effects of hardware (HW) faults on software (SW) in general and NN models in particular, several fault injection (FI) methods have been established in recent years. Current FI methods focus on the methodology of injecting faults but often fall short of accounting for large-scale FI tests, where many fault locations based on a particular fault model need to be analyzed in a short time. Results need to be concise, repeatable, and comparable. To address these requirements and enable fault injection as the default component in a machine learning development cycle, we introduce a novel fault injection framework called PyTorchALFI (Application Level Fault Injection for PyTorch) based on PyTorchFI. PyTorchALFI provides an efficient way to define randomly generated and reusable sets of faults to inject into PyTorch models, defines complex test scenarios, enhances data sets, and generates test KPIs while tightly coupling fault-free, faulty, and modified NN. In this paper, we provide details about the definition of test scenarios, software architecture, and several examples of how to use the new framework to apply iterative changes in fault location and number, compare different model modifications, and analyze test results.