An in-house developed 2D ultrasound computerized Tomography system is fully automated. Performance analysis of instrument and software interfacing soft tools, namely the LabVIEW, MATLAB, C, and Python, is presented. The instrument interfacing algorithms, hardware control algorithms, signal processing, and analysis codes are written using above mentioned soft tool platforms. Total of eight performance indices are used to compare the ease of (a) realtime control of electromechanical assembly, (b) sensors, instruments integration, (c) synchronized data acquisition, and (d) simultaneous raw data processing. It is found that C utilizes the least processing power and performs a lower number of processes to perform the same task. In runtime analysis (data acquisition and realtime control), LabVIEW performs best, taking 365.69s in comparison to MATLAB (623.83s), Python ( 1505.54s), and C (1252.03s) to complete the experiment. Python performs better in establishing faster interfacing and minimum RAM usage. LabVIEW is recommended for its fast process execution. C is recommended for the most economical implementation. Python is recommended for complex system automation having a very large number of components involved. This article provides a methodology to select optimal soft tools for instrument automation-related aspects.