This paper proposes \emph{knowledge-based paraonoia search} (KBPS) to find forced wins during trick-taking in the card game Skat; for some one of the most interesting card games for three players. It combines efficient partial information game-tree search with knowledge representation and reasoning. This worst-case analysis, initiated after a small number of tricks, leads to a prioritized choice of cards. We provide variants of KBPS for the declarer and the opponents, and an approximation to find a forced win against most worlds in the belief space. Replaying thousands of expert games, our evaluation indicates that the AIs with the new algorithms perform better than humans in their play, achieving an average score of over 1,000 points in the agreed standard for evaluating Skat tournaments, the extended Seeger system.