Ontologies are increasingly used for machine reasoning over the last few years. They can provide explanations of concepts or be used for concept classification if there exists a mapping from the desired labels to the relevant ontology. Another advantage of using ontologies is that they do not need a learning process, meaning that we do not need the train data or time before using them. This paper presents a practical use of an ontology for a classification problem from the financial domain. It first transforms a given ontology to a graph and proceeds with generalization with the aim to find common semantic descriptions of the input sets of financial concepts. We present a solution to the shared task on Learning Semantic Similarities for the Financial Domain (FinSim-2 task). The task is to design a system that can automatically classify concepts from the Financial domain into the most relevant hypernym concept in an external ontology - the Financial Industry Business Ontology. We propose a method that maps given concepts to the mentioned ontology and performs a graph search for the most relevant hypernyms. We also employ a word vectorization method and a machine learning classifier to supplement the method with a ranked list of labels for each concept.