In this article, a joint security and latency analysis of short packet-based low-altitude communications when the eavesdropper is close to the receiver is addressed. To reveal the impacts of the signal-to-noise ratio (SNR) and block-length on latency in communications, we propose a new metric named secure latency (SL) and derive the expressions for the effective secure probability (ESP) and the average SL. To minimize the average SL, different transmission designs are analyzed, in which the optimal solutions of SNR and block-length are provided. Numerical results validate our analysis and reveal the trade-off between reliability and security and the impacts of the block-length, SNR, and packet-generating rate on average SL, of which SNR and the block-length account for main factors. In addition, we find that the performance of SL can be enhanced by allocating less SNR.