In response to the COVID-19 pandemic, the integration of interpretable machine learning techniques has garnered significant attention, offering transparent and understandable insights crucial for informed clinical decision making. This literature review delves into the applications of interpretable machine learning in predicting the prognosis of respiratory diseases, particularly focusing on COVID-19 and its implications for future research and clinical practice. We reviewed various machine learning models that are not only capable of incorporating existing clinical domain knowledge but also have the learning capability to explore new information from the data. These models and experiences not only aid in managing the current crisis but also hold promise for addressing future disease outbreaks. By harnessing interpretable machine learning, healthcare systems can enhance their preparedness and response capabilities, thereby improving patient outcomes and mitigating the impact of respiratory diseases in the years to come.