https://github.com/chengyuyang-njit/ICCRD-2025. The code and data are available at https://github.com/chengyuyang-njit/ICCRD-2025.
According to the National Rosacea Society, approximately sixteen million Americans suffer from rosacea, a common skin condition that causes flushing or long-term redness on a person's face. To increase rosacea awareness and to better assist physicians to make diagnosis on this disease, we propose an interpretable automatic rosacea detection method based on whitened cosine similarity in this paper. The contributions of the proposed methods are three-fold. First, the proposed method can automatically distinguish patients suffering from rosacea from people who are clean of this disease with a significantly higher accuracy than other methods in unseen test data, including both classical deep learning and statistical methods. Second, the proposed method addresses the interpretability issue by measuring the similarity between the test sample and the means of two classes, namely the rosacea class versus the normal class, which allows both medical professionals and patients to understand and trust the results. And finally, the proposed methods will not only help increase awareness of rosacea in the general population, but will also help remind patients who suffer from this disease of possible early treatment, as rosacea is more treatable in its early stages. The code and data are available at