schema.org annotations. We were also able to create a set of initial training sentences for classifying user utterances into the generated intents. We demonstrate our approach on the NLU module of a state-of-the art dialogue system development framework.
Goal-oriented dialogue systems typically communicate with a backend (e.g. database, Web API) to complete certain tasks to reach a goal. The intents that a dialogue system can recognize are mostly included to the system by the developer statically. For an open dialogue system that can work on more than a small set of well curated data and APIs, this manual intent creation will not scalable. In this paper, we introduce a straightforward methodology for intent creation based on semantic annotation of data and services on the web. With this method, the Natural Language Understanding (NLU) module of a goal-oriented dialogue system can adapt to newly introduced APIs without requiring heavy developer involvement. We were able to extract intents and necessary slots to be filled from