Intelligent robots need to generate and execute plans. In order to deal with the complexity of real environments, planning makes some assumptions about the world. When executing plans, the assumptions are usually not met. Most works have focused on the negative impact of this fact and the use of replanning after execution failures. Instead, we focus on the positive impact, or opportunities to find better plans. When planning, the proposed technique finds and stores those opportunities. Later, during execution, the monitoring system can use them to focus perception and repair the plan, instead of replanning from scratch. Experiments in several paradigmatic robotic tasks show how the approach outperforms standard replanning strategies.