The segmentation-free research efforts for addressing handwritten text recognition can be divided into three categories: connectionist temporal classification (CTC), hidden Markov model and encoder-decoder methods. In this paper, inspired by the above three modeling methods, we propose a new recognition network by using a novel three-dimensional (3D) attention module and global-local context information. Based on the feature maps of the last convolutional layer, a series of 3D blocks with different resolutions are split. Then, these 3D blocks are fed into the 3D attention module to generate sequential visual features. Finally, by integrating the visual features and the corresponding global-local context features, a well-designed representation can be obtained. Main canonical neural units including attention mechanisms, fully-connected layer, recurrent unit and convolutional layer are efficiently organized into a network and can be jointly trained by the CTC loss and the cross-entropy loss. Experiments on the latest Chinese handwritten text datasets (the SCUT-HCCDoc and the SCUT-EPT) and one English handwritten text dataset (the IAM) show that the proposed method can make a new milestone.