Large Language Models (LLMs) have become very popular and have found use cases in many domains, such as chatbots, auto-task completion agents, and much more. However, LLMs are vulnerable to different types of attacks, such as jailbreaking, prompt injection attacks, and privacy leakage attacks. Foundational LLMs undergo adversarial and alignment training to learn not to generate malicious and toxic content. For specialized use cases, these foundational LLMs are subjected to fine-tuning or quantization for better performance and efficiency. We examine the impact of downstream tasks such as fine-tuning and quantization on LLM vulnerability. We test foundation models like Mistral, Llama, MosaicML, and their fine-tuned versions. Our research shows that fine-tuning and quantization reduces jailbreak resistance significantly, leading to increased LLM vulnerabilities. Finally, we demonstrate the utility of external guardrails in reducing LLM vulnerabilities.