Dense retrieval has become the new paradigm in passage retrieval. Despite its effectiveness on typo-free queries, it is not robust when dealing with queries that contain typos. Current works on improving the typo-robustness of dense retrievers combine (i) data augmentation to obtain the typoed queries during training time with (ii) additional robustifying subtasks that aim to align the original, typo-free queries with their typoed variants. Even though multiple typoed variants are available as positive samples per query, some methods assume a single positive sample and a set of negative ones per anchor and tackle the robustifying subtask with contrastive learning; therefore, making insufficient use of the multiple positives (typoed queries). In contrast, in this work, we argue that all available positives can be used at the same time and employ contrastive learning that supports multiple positives (multi-positive). Experimental results on two datasets show that our proposed approach of leveraging all positives simultaneously and employing multi-positive contrastive learning on the robustifying subtask yields improvements in robustness against using contrastive learning with a single positive.