The extra-large multiple-input multiple-output (XL-MIMO) architecture has been recognized as a technology for supporting the massive MTC (mMTC), providing very high-data rates in high-user density scenarios. However, the large dimension of the array increases the Rayleigh distance (dRayl), in addition to obstacles and scatters causing spatial non-stationarities and distinct visibility regions (VRs) across the XL array extension. We investigate the random access (RA) problem in crowded XL-MIMO scenarios; the proposed grant-based random access (GB-RA) protocol combining the advantage of non-orthogonal multiple access (NOMA) and strongest user collision resolutions in extra-large arrays (SUCRe-XL) named NOMA-XL can allow access of two or three colliding users in the same XL sub-array (SA) selecting the same pilot sequence. The received signal processing in a SA basis changes the dRayl, enabling the far-field planar wavefront propagation condition, while improving the system performance. The proposed NOMA-XL GB-RA protocol can reduce the number of attempts to access the mMTC network while improving the average sum rate, as the number of SA increases.