Hyperspectral imaging technology has a wide range of applications, including forest management, mineral resource exploration, and Earth surface monitoring. Endmember extraction of hyperspectral images is a key step in leveraging this technology for applications. It aims to identifying the spectral signatures of materials, i.e., the major components in the observed scenes. Theoretically speaking, Hottopixx methods should be effective on problems involving extracting endmembers from hyperspectral images. Yet, these methods are challenging to perform in practice, due to high computational costs. They require us to solve LP problems, called Hottopixx models, whose size grows quadratically with the number of pixels in the image. It is thus still unclear as to whether they are actually effective or not. This study clarifies this situation. We propose an efficient and effective implementation of Hottopixx. Our implementation follows the framework of column generation, which is known as a classical but powerful means of solving large-scale LPs. We show in experiments that our implementation is applicable to the endmember extraction from real hyperspectral images and can provide estimations of endmember signatures with higher accuracy than the existing methods can.