Named entities are ubiquitous in text that naturally accompanies images, especially in domains such as news or Wikipedia articles. In previous work, named entities have been identified as a likely reason for low performance of image-text retrieval models pretrained on Wikipedia and evaluated on named entities-free benchmark datasets. Because they are rarely mentioned, named entities could be challenging to model. They also represent missed learning opportunities for self-supervised models: the link between named entity and object in the image may be missed by the model, but it would not be if the object were mentioned using a more common term. In this work, we investigate hypernymization as a way to deal with named entities for pretraining grounding-based multi-modal models and for fine-tuning on open-vocabulary detection. We propose two ways to perform hypernymization: (1) a ``manual'' pipeline relying on a comprehensive ontology of concepts, and (2) a ``learned'' approach where we train a language model to learn to perform hypernymization. We run experiments on data from Wikipedia and from The New York Times. We report improved pretraining performance on objects of interest following hypernymization, and we show the promise of hypernymization on open-vocabulary detection, specifically on classes not seen during training.