This study introduces a hybrid machine learning-based scale-bridging framework for predicting the permeability of fibrous textile structures. By addressing the computational challenges inherent to multiscale modeling, the proposed approach evaluates the efficiency and accuracy of different scale-bridging methodologies combining traditional surrogate models and even integrating physics-informed neural networks (PINNs) with numerical solvers, enabling accurate permeability predictions across micro- and mesoscales. Four methodologies were evaluated: Single Scale Method (SSM), Simple Upscaling Method (SUM), Scale-Bridging Method (SBM), and Fully Resolved Model (FRM). SSM, the simplest method, neglects microscale permeability and exhibited permeability values deviating by up to 150\% of the FRM model, which was taken as ground truth at an equivalent lower fiber volume content. SUM improved predictions by considering uniform microscale permeability, yielding closer values under similar conditions, but still lacked structural variability. The SBM method, incorporating segment-based microscale permeability assignments, showed significant enhancements, achieving almost equivalent values while maintaining computational efficiency and modeling runtimes of ~45 minutes per simulation. In contrast, FRM, which provides the highest fidelity by fully resolving microscale and mesoscale geometries, required up to 270 times more computational time than SSM, with model files exceeding 300 GB. Additionally, a hybrid dual-scale solver incorporating PINNs has been developed and shows the potential to overcome generalization errors and the problem of data scarcity of the data-driven surrogate approaches. The hybrid framework advances permeability modelling by balancing computational cost and prediction reliability, laying the foundation for further applications in fibrous composite manufacturing.