Integrated sensing and communications (ISAC) has been considered one of the new paradigms for sixth-generation (6G) wireless networks. In the millimeter-wave (mmWave) ISAC system, hybrid beamforming (HBF) is considered an emerging technology to exploit the limited number of radio frequency (RF) chains in order to reduce the system hardware cost and power consumption. However, the HBF structure reduces the spatial degrees of freedom for the ISAC system, which further leads to increased interference between multiple users and between users and radar sensing. To solve the above problem, rate split multiple access (RSMA), which is a flexible and robust interference management strategy, is considered. We investigate the joint common rate allocation and HBF design problem for the HBF-based RSMA-assisted mmWave ISAC scheme. We propose the penalty dual decomposition (PDD) method coupled with the weighted mean squared error (WMMSE) minimization method to solve this high-dimensional non-convex problem, which converges to the Karush-Kuhn-Tucker (KKT) point of the original problem. Then, we extend the proposed algorithm to the HBF design based on finite-resolution phase shifters (PSs) to further improve the energy efficiency of the system. Simulation results demonstrate the effectiveness of the proposed algorithm and show that the RSMA-ISAC scheme outperforms other benchmark schemes.