In recent years, robotics has evolved, placing robots in social contexts, and giving rise to Human-Robot Interaction (HRI). HRI aims to improve user satisfaction by designing autonomous social robots with user modeling functionalities and user-adapted interactions, storing data on people to achieve personalized interactions. Personality, a vital factor in human interactions, influences temperament, social preferences, and cognitive abilities. Despite much research on personality traits influencing human-robot interactions, little attention has been paid to the influence of the robot's personality on the user model. Personality can influence not only temperament and how people interact with each other but also what they remember about an interaction or the person they interact with. A robot's personality traits could therefore influence what it remembers about the user and thus modify the user model and the consequent interactions. However, no studies investigating such conditioning have been found. This paper addresses this gap by proposing distinct user models that reflect unique robotic personalities, exploring the interplay between individual traits, memory, and social interactions to replicate human-like processes, providing users with more engaging and natural experiences