Time series analysis has gained significant attention due to its critical applications in diverse fields such as healthcare, finance, and sensor networks. The complexity and non-stationarity of time series make it challenging to capture the interaction patterns across different timestamps. Current approaches struggle to model higher-order interactions within time series, and focus on learning temporal or spatial dependencies separately, which limits performance in downstream tasks. To address these gaps, we propose Higher-order Cross-structural Embedding Model for Time Series (High-TS), a novel framework that jointly models both temporal and spatial perspectives by combining multiscale Transformer with Topological Deep Learning (TDL). Meanwhile, High-TS utilizes contrastive learning to integrate these two structures for generating robust and discriminative representations. Extensive experiments show that High-TS outperforms state-of-the-art methods in various time series tasks and demonstrate the importance of higher-order cross-structural information in improving model performance.