The scholarly publication space is growing steadily not just in numbers but also in complexity due to collaboration between individuals from within and across fields of research. This paper presents a hierarchical classification system that automatically categorizes a scholarly publication using its abstract into a three-tier hierarchical label set of fields (discipline-field-subfield). This system enables a holistic view about the interdependence of research activities in the mentioned hierarchical tiers in terms of knowledge production through articles and impact through citations. The classification system (44 disciplines - 738 fields - 1,501 subfields) utilizes and is able to cope with 160 million abstract snippets in Microsoft Academic Graph (Version 2018-05-17) using batch training in a modularized and distributed fashion to address and assess interdisciplinarity and inter-field classifications. In addition, we have explored multi-class classifications in both the single-label and multi-label settings. In total, we have conducted 3,140 experiments, in all models (Convolutional Neural Networks, Recurrent Neural Networks, Transformers), the classification accuracy is > 90% in 77.84% and 78.83% of the single-label and multi-label classifications, respectively. We examine the advantages of our classification by its ability to better align research texts and output with disciplines, to adequately classify them in an automated way, as well as to capture the degree of interdisciplinarity in a publication which enables downstream analytics such as field interdisciplinarity. This system (a set of pretrained models) can serve as a backbone to an interactive system of indexing scientific publications.